Subgroup ($H$) information
| Description: | $C_6^2:C_{12}$ | 
| Order: | \(432\)\(\medspace = 2^{4} \cdot 3^{3} \) | 
| Index: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) | 
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
| Generators: | $\langle(2,3)(6,7), (1,7,5,2)(3,4,6,8)(13,18)(14,17)(15,20)(16,19), (1,8)(2,7)(3,6) \!\cdots\! \rangle$ | 
| Derived length: | $2$ | 
The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Ambient group ($G$) information
| Description: | $C_6^4:D_6$ | 
| Order: | \(15552\)\(\medspace = 2^{6} \cdot 3^{5} \) | 
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) | 
| Derived length: | $3$ | 
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_6^4.C_6^2.C_2^2$ | 
| $\operatorname{Aut}(H)$ | $Q_8.(C_2\times C_6\times S_3).C_2^4$ | 
| $W$ | $C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) | 
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $18$ | 
| Number of conjugacy classes in this autjugacy class | $1$ | 
| Möbius function | $0$ | 
| Projective image | $C_6^4:D_6$ | 
