Properties

Label 15552.fd.4.i1
Order $ 2^{4} \cdot 3^{5} $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: not computed
Generators: $\langle(1,4)(2,3)(5,7)(8,10,11,9)(12,18,20,14,19,13)(15,17), (5,6,7)(8,9,11)(12,16,18,19,17,14,20,15,13) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: not computed

The subgroup is nonabelian and solvable. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $C_6^4:D_6$
Order: \(15552\)\(\medspace = 2^{6} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_6^2.C_3^4.C_2^5$
$\operatorname{Aut}(H)$ not computed
$\card{W}$\(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2\times C_6^2.C_3^3.C_2^2$
Normal closure:$C_2\times C_6^2.C_3^3.C_2^2$
Core:$C_3^4:S_4$
Minimal over-subgroups:$C_2\times C_6^2.C_3^3.C_2^2$
Maximal under-subgroups:$C_3^4:S_4$$C_6^3:C_3^2$$C_3^4:S_4$$C_6^3:C_6$$C_6^3:S_3$$C_6^3.S_3$$C_6^3:S_3$$C_6^3:S_3$$C_6^3:S_3$$C_6^3:S_3$$C_3^4:D_6$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image not computed