Subgroup ($H$) information
Description: | $D_4$ |
Order: | \(8\)\(\medspace = 2^{3} \) |
Index: | \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \) |
Exponent: | \(4\)\(\medspace = 2^{2} \) |
Generators: |
$\langle(2,3)(6,7)(9,10)(12,13)(14,19)(16,17)(18,20), (1,4)(2,3), (1,2)(3,4)(6,7)(8,11)(9,10)\rangle$
|
Nilpotency class: | $2$ |
Derived length: | $2$ |
The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.
Ambient group ($G$) information
Description: | $C_6^4:D_6$ |
Order: | \(15552\)\(\medspace = 2^{6} \cdot 3^{5} \) |
Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2\times C_6^2.C_3^4.C_2^5$ |
$\operatorname{Aut}(H)$ | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
$\card{W}$ | not computed |
Related subgroups
Centralizer: | not computed | |
Normalizer: | not computed | |
Normal closure: | $C_6^2.C_3^3.D_4$ | |
Core: | $C_2$ | |
Minimal over-subgroups: | $C_2\times D_4$ | $C_2\times D_4$ |
Other information
Number of subgroups in this autjugacy class | $162$ |
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | not computed |
Projective image | not computed |