Properties

Label 15552.fd.1944.K
Order $ 2^{3} $
Index $ 2^{3} \cdot 3^{5} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(2,3)(6,7)(9,10)(12,13)(14,19)(16,17)(18,20), (1,4)(2,3), (1,2)(3,4)(6,7)(8,11)(9,10)\rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.

Ambient group ($G$) information

Description: $C_6^4:D_6$
Order: \(15552\)\(\medspace = 2^{6} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_6^2.C_3^4.C_2^5$
$\operatorname{Aut}(H)$ $D_4$, of order \(8\)\(\medspace = 2^{3} \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure:$C_6^2.C_3^3.D_4$
Core:$C_2$
Minimal over-subgroups:$C_2\times D_4$$C_2\times D_4$

Other information

Number of subgroups in this autjugacy class$162$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed