Properties

Label 15552.fa.216.eg1
Order $ 2^{3} \cdot 3^{2} $
Index $ 2^{3} \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6\times D_6$
Order: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Index: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(1,6)(2,8)(3,5)(4,7), (1,2)(3,4)(5,7)(6,8)(9,10)(12,13)(14,17)(15,16)(19,20) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_6^4:D_6$
Order: \(15552\)\(\medspace = 2^{6} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times C_6^3).C_3^4.C_2^4$
$\operatorname{Aut}(H)$ $D_6\times S_4$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
$W$$C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_6$
Normalizer:$C_6^2:D_4$
Normal closure:$C_6^4.S_3$
Core:$C_1$
Minimal over-subgroups:$C_6^2:C_6$$C_6^2:C_6$$C_6^2:C_2^2$$C_6^2:C_2^2$
Maximal under-subgroups:$C_6^2$$C_6\times S_3$$C_6\times S_3$$C_2^2\times C_6$$C_2\times D_6$

Other information

Number of subgroups in this autjugacy class$54$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_6^4:D_6$