Properties

Label 15552.fa.1944.ba1
Order $ 2^{3} $
Index $ 2^{3} \cdot 3^{5} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(2,8)(3,5), (1,6)(2,8)(3,5)(4,7), (1,2)(3,4)(5,7)(6,8)(9,10)(12,13)(14,17)(15,16)(19,20)\rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.

Ambient group ($G$) information

Description: $C_6^4:D_6$
Order: \(15552\)\(\medspace = 2^{6} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times C_6^3).C_3^4.C_2^4$
$\operatorname{Aut}(H)$ $D_4$, of order \(8\)\(\medspace = 2^{3} \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2\times C_6$
Normalizer:$C_6\times D_4$
Normal closure:$C_6^4.S_3$
Core:$C_1$
Minimal over-subgroups:$C_3\times D_4$$C_3:D_4$$C_3:D_4$$C_3:D_4$$C_3:D_4$$C_3:D_4$$C_2\times D_4$
Maximal under-subgroups:$C_2^2$$C_2^2$$C_4$

Other information

Number of subgroups in this autjugacy class$324$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_6^4:D_6$