Properties

Label 15552.fa.192.a1
Order $ 3^{4} $
Index $ 2^{6} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^4$
Order: \(81\)\(\medspace = 3^{4} \)
Index: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Exponent: \(3\)
Generators: $\langle(15,16,18), (9,11,10), (13,20,14)(15,18,16), (12,17,19)(15,18,16)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and a $p$-group (hence elementary and hyperelementary).

Ambient group ($G$) information

Description: $C_6^4:D_6$
Order: \(15552\)\(\medspace = 2^{6} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2^3:S_4$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_2^4:S_4$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian, monomial (hence solvable), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times C_6^3).C_3^4.C_2^4$
$\operatorname{Aut}(H)$ $C_2.\PSL(4,3).C_2$
$W$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_6^4$
Normalizer:$C_6^4:D_6$
Complements:$C_2^3:S_4$
Minimal over-subgroups:$C_3^4:C_3$$C_3^3\times C_6$$C_3^3\times C_6$$C_3^3\times C_6$$C_3^2\wr C_2$$C_3^3:C_6$$C_3^3:C_6$
Maximal under-subgroups:$C_3^3$$C_3^3$$C_3^3$$C_3^3$$C_3^3$$C_3^3$$C_3^3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_6^4:D_6$