Properties

Label 15552.dp.4.i1
Order $ 2^{4} \cdot 3^{5} $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(3888\)\(\medspace = 2^{4} \cdot 3^{5} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: not computed
Generators: $ab^{2}c^{12}d^{4}e^{5}, e^{3}, c^{28}e^{3}, d^{2}e^{2}, b^{3}c^{9}e^{2}, e^{2}, d^{3}e^{3}, c^{12}, b^{2}$ Copy content Toggle raw display
Derived length: not computed

The subgroup is nonabelian and solvable. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $C_6^4.D_6$
Order: \(15552\)\(\medspace = 2^{6} \cdot 3^{5} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_6^2.C_3^3.C_2^4$
$\operatorname{Aut}(H)$ not computed
$W$$C_3^4.S_4$, of order \(1944\)\(\medspace = 2^{3} \cdot 3^{5} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2\times C_6^2.C_3^3.C_2^2$
Normal closure:$C_2\times C_6^2.C_3^3.C_2^2$
Core:$C_3^4.S_4$
Minimal over-subgroups:$C_2\times C_6^2.C_3^3.C_2^2$
Maximal under-subgroups:$C_3^4.S_4$$C_6^3.C_3^2$$C_3^4.S_4$$C_6^3:C_6$$C_6^3.S_3$$C_6^2:D_{18}$$C_6^2:D_{18}$$C_3^4.D_6$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$C_6^4.D_6$