Subgroup ($H$) information
| Description: | $C_6^2.C_{12}$ |
| Order: | \(432\)\(\medspace = 2^{4} \cdot 3^{3} \) |
| Index: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Generators: |
$c^{9}, e^{3}, d^{3}, b^{2}c^{16}d^{3}e^{3}, d^{2}e^{2}, c^{18}, c^{12}$
|
| Derived length: | $2$ |
The subgroup is nonabelian, monomial (hence solvable), metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $C_6^4.D_6$ |
| Order: | \(15552\)\(\medspace = 2^{6} \cdot 3^{5} \) |
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Derived length: | $3$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2\times C_6^2.C_3^3.C_2^4$ |
| $\operatorname{Aut}(H)$ | $C_6\times S_3\times S_4$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \) |
| $W$ | $C_6\times S_3\times A_4$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \) |
Related subgroups
| Centralizer: | $C_6$ | ||
| Normalizer: | $C_6^2.(C_6\times A_4)$ | ||
| Normal closure: | $(C_3\times C_6^3).C_6$ | ||
| Core: | $C_2\times C_6^2$ | ||
| Minimal over-subgroups: | $C_6^3.C_6$ | $C_6^2:C_{36}$ | $(C_2^2\times D_6):C_{18}$ |
Other information
| Number of subgroups in this autjugacy class | $6$ |
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | not computed |
| Projective image | $C_6^3.S_3^2$ |