Subgroup ($H$) information
Description: | $D_{16}:D_4$ |
Order: | \(256\)\(\medspace = 2^{8} \) |
Index: | \(6\)\(\medspace = 2 \cdot 3 \) |
Exponent: | \(16\)\(\medspace = 2^{4} \) |
Generators: |
$a, b, cd^{3}, d^{18}$
|
Nilpotency class: | $4$ |
Derived length: | $2$ |
The subgroup is normal, a semidirect factor, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.
Ambient group ($G$) information
Description: | $C_6.D_8^2$ |
Order: | \(1536\)\(\medspace = 2^{9} \cdot 3 \) |
Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Nilpotency class: | $4$ |
Derived length: | $2$ |
The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.
Quotient group ($Q$) structure
Description: | $C_6$ |
Order: | \(6\)\(\medspace = 2 \cdot 3 \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Automorphism Group: | $C_2$, of order \(2\) |
Outer Automorphisms: | $C_2$, of order \(2\) |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2\times C_4^2.C_2^3.C_2^3.C_2^4$ |
$\operatorname{Aut}(H)$ | $C_4^2.C_2^3.C_2^4$ |
$\card{\operatorname{res}(S)}$ | \(2048\)\(\medspace = 2^{11} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(4\)\(\medspace = 2^{2} \) |
$W$ | $D_8^2$, of order \(256\)\(\medspace = 2^{8} \) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $4$ |
Number of conjugacy classes in this autjugacy class | $4$ |
Möbius function | $1$ |
Projective image | $C_3 \times D_8^2$ |