Properties

Label 1536.399727.6.e1
Order $ 2^{8} $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{16}:D_4$
Order: \(256\)\(\medspace = 2^{8} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Generators: $a, b, cd^{3}, d^{18}$ Copy content Toggle raw display
Nilpotency class: $4$
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_6.D_8^2$
Order: \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Nilpotency class:$4$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_4^2.C_2^3.C_2^3.C_2^4$
$\operatorname{Aut}(H)$ $C_4^2.C_2^3.C_2^4$
$\card{\operatorname{res}(S)}$\(2048\)\(\medspace = 2^{11} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$D_8^2$, of order \(256\)\(\medspace = 2^{8} \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_6.D_8^2$
Complements:$C_6$ $C_6$
Minimal over-subgroups:$C_{12}.D_4^2$$D_{16}:D_8$
Maximal under-subgroups:$D_8:D_4$$C_8.D_8$$C_{16}.D_4$$D_8:D_4$$C_2.D_4^2$$D_{16}:C_4$$C_{16}:D_4$$C_{16}.D_4$$D_4.D_8$$D_4.D_8$$D_{16}:C_2^2$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$1$
Projective image$C_3 \times D_8^2$