Properties

Label 1536.10766179.8.k1.a1
Order $ 2^{6} \cdot 3 $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6.Q_{32}$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Generators: $ad^{13}, d^{24}, b^{4}d^{12}, b^{3}d^{3}, d^{16}, b^{2}cd^{42}, cd^{24}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $(C_2\times C_{16}).D_{24}$
Order: \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_8$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Automorphism Group: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_2^2.C_2^6.C_2^6)$
$\operatorname{Aut}(H)$ $C_{24}:(C_2^4\times C_4)$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\card{W}$\(96\)\(\medspace = 2^{5} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_8$
Normalizer:$(C_2\times C_{16}).D_{24}$
Complements:$C_8$ $C_8$ $C_8$ $C_8$ $C_8$ $C_8$ $C_8$ $C_8$
Minimal over-subgroups:$C_2^3.D_{24}$
Maximal under-subgroups:$C_6:Q_{16}$$C_{24}:C_4$$C_2\times C_{48}$$Q_{16}:C_4$
Autjugate subgroups:1536.10766179.8.k1.b1

Other information

Möbius function not computed
Projective image not computed