Properties

Label 1536.10766179.8.g1.a1
Order $ 2^{6} \cdot 3 $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{24}.C_4$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $ad^{31}, d^{24}, cd^{12}, b^{6}d^{30}, d^{16}, d^{12}, b^{4}d^{36}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $(C_2\times C_{16}).D_{24}$
Order: \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2\times C_4$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Outer Automorphisms: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_2^2.C_2^6.C_2^6)$
$\operatorname{Aut}(H)$ $C_4.(D_6\times D_4^2)$, of order \(3072\)\(\medspace = 2^{10} \cdot 3 \)
$\card{W}$\(96\)\(\medspace = 2^{5} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_8$
Normalizer:$(C_2\times C_{16}).D_{24}$
Minimal over-subgroups:$C_2\times C_4.D_{24}$$C_{24}.C_4^2$$C_{24}.C_4^2$
Maximal under-subgroups:$C_2^2\times C_{24}$$C_6:\OD_{16}$$C_{24}.C_4$$C_{24}.C_4$$C_2^3.Q_8$

Other information

Möbius function not computed
Projective image not computed