Properties

Label 1536.10766179.6.e1.a1
Order $ 2^{8} $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_8^2:C_4$
Order: \(256\)\(\medspace = 2^{8} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Generators: $ad, b$ Copy content Toggle raw display
Nilpotency class: $4$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $(C_2\times C_{16}).D_{24}$
Order: \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_2^2.C_2^6.C_2^6)$
$\operatorname{Aut}(H)$ $C_2^2.C_2^6.C_2^3$
$\card{W}$\(32\)\(\medspace = 2^{5} \)

Related subgroups

Centralizer:$C_2\times C_8$
Normalizer:$(C_2\times C_8\times C_{16}).C_2$
Normal closure:$(C_8\times C_{24}):C_4$
Core:$C_2\times C_8^2$
Minimal over-subgroups:$(C_8\times C_{24}):C_4$$(C_2\times C_8\times C_{16}).C_2$
Maximal under-subgroups:$C_2\times C_8^2$$C_8.C_4^2$$C_2^3.\OD_{16}$

Other information

Number of subgroups in this conjugacy class$3$
Möbius function not computed
Projective image not computed