Properties

Label 1536.10766179.12.b1.a1
Order $ 2^{7} $
Index $ 2^{2} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_4\times C_{16}$
Order: \(128\)\(\medspace = 2^{7} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Generators: $b^{6}d^{30}, c, d^{3}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and a $p$-group (hence elementary and hyperelementary).

Ambient group ($G$) information

Description: $(C_2\times C_{16}).D_{24}$
Order: \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $D_6$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, an A-group, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_2^2.C_2^6.C_2^6)$
$\operatorname{Aut}(H)$ $C_2^6.D_4^2$, of order \(4096\)\(\medspace = 2^{12} \)
$\card{W}$\(2\)

Related subgroups

Centralizer:$C_2\times C_8\times C_{48}$
Normalizer:$(C_2\times C_{16}).D_{24}$
Minimal over-subgroups:$C_2\times C_4\times C_{48}$$C_2\times C_8\times C_{16}$$C_4.(C_8\times D_4)$$C_4.(C_8\times Q_8)$
Maximal under-subgroups:$C_2\times C_4\times C_8$$C_2^2\times C_{16}$$C_2^2\times C_{16}$$C_4\times C_{16}$$C_4\times C_{16}$

Other information

Möbius function not computed
Projective image not computed