Properties

Label 1536.10499001.4.e1.a1
Order $ 2^{7} \cdot 3 $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{16}.D_{12}$
Order: \(384\)\(\medspace = 2^{7} \cdot 3 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Generators: $\left(\begin{array}{rr} 0 & 1 \\ 1 & 0 \end{array}\right), \left(\begin{array}{rr} 130 & 0 \\ 0 & 49 \end{array}\right), \left(\begin{array}{rr} 108 & 0 \\ 0 & 84 \end{array}\right), \left(\begin{array}{rr} 56 & 0 \\ 0 & 139 \end{array}\right), \left(\begin{array}{rr} 109 & 0 \\ 0 & 85 \end{array}\right), \left(\begin{array}{rr} 55 & 0 \\ 0 & 181 \end{array}\right), \left(\begin{array}{rr} 48 & 0 \\ 0 & 21 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & 192 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_{32}.D_{24}$
Order: \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Exponent: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:((C_4\times C_8).C_2^6)$
$\operatorname{Aut}(H)$ $C_3:((C_8\times D_4).C_2^2)$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
$\operatorname{res}(S)$$C_3 \rtimes (C_4^2.C_2^4)$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$D_{12}$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_{32}$
Normalizer:$C_{32}.D_{12}$
Normal closure:$C_{32}.D_{12}$
Core:$C_2\times C_{96}$
Minimal over-subgroups:$C_{32}.D_{12}$
Maximal under-subgroups:$C_2\times C_{96}$$C_{16}.D_6$$C_3:\OD_{64}$$\OD_{64}:C_2$

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$D_{12}:C_4$