Properties

Label 1521.6.507.a1.a1
Order $ 3 $
Index $ 3 \cdot 13^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3$
Order: \(3\)
Index: \(507\)\(\medspace = 3 \cdot 13^{2} \)
Exponent: \(3\)
Generators: $a^{3}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), the Frattini subgroup, cyclic (hence elementary, hyperelementary, metacyclic, and a Z-group), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_{13}^2:C_9$
Order: \(1521\)\(\medspace = 3^{2} \cdot 13^{2} \)
Exponent: \(117\)\(\medspace = 3^{2} \cdot 13 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_{13}^2:C_3$
Order: \(507\)\(\medspace = 3 \cdot 13^{2} \)
Exponent: \(39\)\(\medspace = 3 \cdot 13 \)
Automorphism Group: $C_{13}^2.\GL(2,13)$, of order \(4429152\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7 \cdot 13^{3} \)
Outer Automorphisms: $\SL(2,13):C_4$, of order \(8736\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \cdot 13 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3\times C_{13}^2.C_{12}.\PSL(2,13).C_2$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(\operatorname{Aut}(G))$$C_1$, of order $1$
$\card{\operatorname{ker}(\operatorname{res})}$\(13287456\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 7 \cdot 13^{3} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{13}^2:C_9$
Normalizer:$C_{13}^2:C_9$
Minimal over-subgroups:$C_{39}$$C_{39}$$C_{39}$$C_{39}$$C_{39}$$C_{39}$$C_{39}$$C_{39}$$C_{39}$$C_{39}$$C_{39}$$C_{39}$$C_{39}$$C_{39}$$C_9$
Maximal under-subgroups:$C_1$

Other information

Möbius function$-2197$
Projective image$C_{13}^2:C_3$