Properties

Label 1521.11.507.b1.b1
Order $ 3 $
Index $ 3 \cdot 13^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3$
Order: \(3\)
Index: \(507\)\(\medspace = 3 \cdot 13^{2} \)
Exponent: \(3\)
Generators: $ac^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_{13}^2:C_3^2$
Order: \(1521\)\(\medspace = 3^{2} \cdot 13^{2} \)
Exponent: \(39\)\(\medspace = 3 \cdot 13 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$S_3\times C_{13}^2.C_{12}.\PSL(2,13).C_2$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(S)$$C_1$, of order $1$
$\card{\operatorname{ker}(\operatorname{res})}$\(52416\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 7 \cdot 13 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_3^2$
Normalizer:$C_3^2$
Normal closure:$C_{13}^2:C_3$
Core:$C_1$
Minimal over-subgroups:$C_{13}:C_3$$C_{13}:C_3$$C_{13}:C_3$$C_{13}:C_3$$C_{13}:C_3$$C_{13}:C_3$$C_{13}:C_3$$C_{13}:C_3$$C_{13}:C_3$$C_{13}:C_3$$C_{13}:C_3$$C_{13}:C_3$$C_{13}:C_3$$C_{13}:C_3$$C_3^2$
Maximal under-subgroups:$C_1$
Autjugate subgroups:1521.11.507.b1.a11521.11.507.b1.c1

Other information

Number of subgroups in this conjugacy class$169$
Möbius function$-13$
Projective image$C_{13}^2:C_3^2$