Subgroup ($H$) information
Description: | $C_6^2:D_7$ |
Order: | \(504\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \) |
Index: | \(3\) |
Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
Generators: |
$a^{3}, c^{6}, b^{2}, c^{14}, c^{21}, b^{3}$
|
Derived length: | $2$ |
The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Ambient group ($G$) information
Description: | $C_6^2:F_7$ |
Order: | \(1512\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 7 \) |
Exponent: | \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Quotient group ($Q$) structure
Description: | $C_3$ |
Order: | \(3\) |
Exponent: | \(3\) |
Automorphism Group: | $C_2$, of order \(2\) |
Outer Automorphisms: | $C_2$, of order \(2\) |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^2\times \AGL(2,3)\times F_7$ |
$\operatorname{Aut}(H)$ | $C_2^2\times \GL(2,3)\times F_7$ |
$\card{\operatorname{res}(\operatorname{Aut}(G))}$ | \(8064\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(9\)\(\medspace = 3^{2} \) |
$W$ | $C_2\times F_7$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \) |
Related subgroups
Other information
Number of conjugacy classes in this autjugacy class | $1$ |
Möbius function | $-1$ |
Projective image | $C_2\times F_7$ |