Properties

Label 150976.a.8.e1.b1
Order $ 2^{3} \cdot 7 \cdot 337 $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{337}:C_{56}$
Order: \(18872\)\(\medspace = 2^{3} \cdot 7 \cdot 337 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(18872\)\(\medspace = 2^{3} \cdot 7 \cdot 337 \)
Generators: $b^{8}, a^{8}, a^{14}b^{1537}, b^{1348}, a^{28}b^{2210}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, and a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group).

Ambient group ($G$) information

Description: $C_{2696}:C_{56}$
Order: \(150976\)\(\medspace = 2^{6} \cdot 7 \cdot 337 \)
Exponent: \(18872\)\(\medspace = 2^{3} \cdot 7 \cdot 337 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_8$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Automorphism Group: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{1348}.C_{336}.C_2^3$
$\operatorname{Aut}(H)$ $C_2\times F_{337}$, of order \(226464\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \cdot 337 \)
$W$$C_{337}:C_{56}$, of order \(18872\)\(\medspace = 2^{3} \cdot 7 \cdot 337 \)

Related subgroups

Centralizer:$C_8$
Normalizer:$C_{2696}:C_{56}$
Complements:$C_8$ $C_8$ $C_8$ $C_8$ $C_8$ $C_8$ $C_8$ $C_8$
Minimal over-subgroups:$D_{337}:C_{56}$
Maximal under-subgroups:$C_{337}:C_{28}$$C_{337}:C_8$$C_{56}$
Autjugate subgroups:150976.a.8.e1.a1

Other information

Möbius function$0$
Projective image$C_{1348}:C_{56}$