Properties

Label 1504.2.16.b1.c1
Order $ 2 \cdot 47 $
Index $ 2^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{94}$
Order: \(94\)\(\medspace = 2 \cdot 47 \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(94\)\(\medspace = 2 \cdot 47 \)
Generators: $a^{2}b^{2}, c^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,47$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and central.

Ambient group ($G$) information

Description: $C_{94}.C_4^2$
Order: \(1504\)\(\medspace = 2^{5} \cdot 47 \)
Exponent: \(188\)\(\medspace = 2^{2} \cdot 47 \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_4:C_4$
Order: \(16\)\(\medspace = 2^{4} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2^2\wr C_2$, of order \(32\)\(\medspace = 2^{5} \)
Outer Automorphisms: $D_4$, of order \(8\)\(\medspace = 2^{3} \)
Nilpotency class: $2$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metacyclic (hence metabelian).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{46}\times C_2^4:C_3.D_4$
$\operatorname{Aut}(H)$ $C_{46}$, of order \(46\)\(\medspace = 2 \cdot 23 \)
$\operatorname{res}(S)$$C_{46}$, of order \(46\)\(\medspace = 2 \cdot 23 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(128\)\(\medspace = 2^{7} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{94}.C_4^2$
Normalizer:$C_{94}.C_4^2$
Minimal over-subgroups:$C_2\times C_{94}$$C_2\times C_{94}$$C_2\times C_{94}$
Maximal under-subgroups:$C_{47}$$C_2$
Autjugate subgroups:1504.2.16.b1.a11504.2.16.b1.b1

Other information

Möbius function$0$
Projective image$C_4:C_4$