Subgroup ($H$) information
| Description: | $C_5$ |
| Order: | \(5\) |
| Index: | \(300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \) |
| Exponent: | \(5\) |
| Generators: |
$a^{10}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is the Frattini subgroup (hence characteristic and normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $p$-group, and simple.
Ambient group ($G$) information
| Description: | $C_{30}:C_{50}$ |
| Order: | \(1500\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{3} \) |
| Exponent: | \(150\)\(\medspace = 2 \cdot 3 \cdot 5^{2} \) |
| Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Quotient group ($Q$) structure
| Description: | $D_6\times C_5^2$ |
| Order: | \(300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \) |
| Exponent: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
| Automorphism Group: | $D_6\times \GL(2,5)$, of order \(5760\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \) |
| Outer Automorphisms: | $C_2\times \GL(2,5)$, of order \(960\)\(\medspace = 2^{6} \cdot 3 \cdot 5 \) |
| Nilpotency class: | $-1$ |
| Derived length: | $2$ |
The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $\He_5.C_6.C_2^4.C_2$ |
| $\operatorname{Aut}(H)$ | $C_4$, of order \(4\)\(\medspace = 2^{2} \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_4$, of order \(4\)\(\medspace = 2^{2} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(6000\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{3} \) |
| $W$ | $C_1$, of order $1$ |
Related subgroups
| Centralizer: | $C_{30}:C_{50}$ | ||||
| Normalizer: | $C_{30}:C_{50}$ | ||||
| Minimal over-subgroups: | $C_5^2$ | $C_{25}$ | $C_{15}$ | $C_{10}$ | $C_{10}$ |
| Maximal under-subgroups: | $C_1$ |
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $-30$ |
| Projective image | $D_6\times C_5^2$ |