Properties

Label 148950.b.4965.a1
Order $ 2 \cdot 3 \cdot 5 $
Index $ 3 \cdot 5 \cdot 331 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{30}$
Order: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Index: \(4965\)\(\medspace = 3 \cdot 5 \cdot 331 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $a^{15}, b^{993}, b^{3310}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a direct factor, and cyclic (hence elementary ($p = 2,3,5$), hyperelementary, metacyclic, and a Z-group).

Ambient group ($G$) information

Description: $C_{4965}:C_{30}$
Order: \(148950\)\(\medspace = 2 \cdot 3^{2} \cdot 5^{2} \cdot 331 \)
Exponent: \(9930\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 331 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_{331}:C_{15}$
Order: \(4965\)\(\medspace = 3 \cdot 5 \cdot 331 \)
Exponent: \(4965\)\(\medspace = 3 \cdot 5 \cdot 331 \)
Automorphism Group: $F_{331}$, of order \(109230\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \cdot 331 \)
Outer Automorphisms: $C_{22}$, of order \(22\)\(\medspace = 2 \cdot 11 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian and a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{4965}.C_{330}.C_2^3$
$\operatorname{Aut}(H)$ $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{4965}:C_{30}$
Normalizer:$C_{4965}:C_{30}$
Complements:$C_{331}:C_{15}$
Minimal over-subgroups:$C_{9930}$$C_5\times C_{30}$$C_3\times C_{30}$
Maximal under-subgroups:$C_{15}$$C_{10}$$C_6$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-331$
Projective image$C_{331}:C_{15}$