Subgroup ($H$) information
Description: | $C_2\times C_{48}$ |
Order: | \(96\)\(\medspace = 2^{5} \cdot 3 \) |
Index: | \(1544\)\(\medspace = 2^{3} \cdot 193 \) |
Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Generators: |
$a^{12}b^{769}, a^{96}b^{288}, a^{48}b^{60}, b^{386}, a^{64}b^{32}, a^{24}b^{6}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.
Ambient group ($G$) information
Description: | $C_4\times F_{193}$ |
Order: | \(148224\)\(\medspace = 2^{8} \cdot 3 \cdot 193 \) |
Exponent: | \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \) |
Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{386}.C_{96}.C_2^3$ |
$\operatorname{Aut}(H)$ | $D_4:C_2^3$, of order \(64\)\(\medspace = 2^{6} \) |
$W$ | $C_1$, of order $1$ |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $193$ |
Möbius function | $0$ |
Projective image | $C_2\times F_{193}$ |