Properties

Label 1480.10.296.a1.a1
Order $ 5 $
Index $ 2^{3} \cdot 37 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5$
Order: \(5\)
Index: \(296\)\(\medspace = 2^{3} \cdot 37 \)
Exponent: \(5\)
Generators: $b^{111}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $5$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_{185}:C_8$
Order: \(1480\)\(\medspace = 2^{3} \cdot 5 \cdot 37 \)
Exponent: \(1480\)\(\medspace = 2^{3} \cdot 5 \cdot 37 \)
Derived length:$2$

The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Quotient group ($Q$) structure

Description: $C_{37}:C_8$
Order: \(296\)\(\medspace = 2^{3} \cdot 37 \)
Exponent: \(296\)\(\medspace = 2^{3} \cdot 37 \)
Automorphism Group: $C_2\times F_{37}$, of order \(2664\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 37 \)
Outer Automorphisms: $C_{18}$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{185}.C_9.C_4^2.C_2$
$\operatorname{Aut}(H)$ $C_4$, of order \(4\)\(\medspace = 2^{2} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_4$, of order \(4\)\(\medspace = 2^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(13320\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \cdot 37 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{185}:C_4$
Normalizer:$C_{185}:C_8$
Complements:$C_{37}:C_8$
Minimal over-subgroups:$C_{185}$$C_{10}$
Maximal under-subgroups:$C_1$

Other information

Möbius function$0$
Projective image$C_{185}:C_8$