Properties

Label 14792.f.172.c1.d1
Order $ 2 \cdot 43 $
Index $ 2^{2} \cdot 43 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{86}$
Order: \(86\)\(\medspace = 2 \cdot 43 \)
Index: \(172\)\(\medspace = 2^{2} \cdot 43 \)
Exponent: \(86\)\(\medspace = 2 \cdot 43 \)
Generators: $a^{172}, a^{8}b^{16}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,43$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{43}:C_{344}$
Order: \(14792\)\(\medspace = 2^{3} \cdot 43^{2} \)
Exponent: \(344\)\(\medspace = 2^{3} \cdot 43 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{43}.C_{21}^2.C_2^4$
$\operatorname{Aut}(H)$ $C_{42}$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{43}\times C_{172}$
Normalizer:$C_{43}\times C_{172}$
Normal closure:$C_{43}\times C_{86}$
Core:$C_2$
Minimal over-subgroups:$C_{43}\times C_{86}$$C_{172}$
Maximal under-subgroups:$C_{43}$$C_2$
Autjugate subgroups:14792.f.172.c1.a114792.f.172.c1.b114792.f.172.c1.c114792.f.172.c1.e114792.f.172.c1.f114792.f.172.c1.g114792.f.172.c1.h114792.f.172.c1.i114792.f.172.c1.j114792.f.172.c1.k114792.f.172.c1.l114792.f.172.c1.m114792.f.172.c1.n114792.f.172.c1.o114792.f.172.c1.p114792.f.172.c1.q114792.f.172.c1.r114792.f.172.c1.s114792.f.172.c1.t114792.f.172.c1.u1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$C_{43}:C_{172}$