Properties

Label 14792.f.172.b1.a1
Order $ 2 \cdot 43 $
Index $ 2^{2} \cdot 43 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{86}$
Order: \(86\)\(\medspace = 2 \cdot 43 \)
Index: \(172\)\(\medspace = 2^{2} \cdot 43 \)
Exponent: \(86\)\(\medspace = 2 \cdot 43 \)
Generators: $a^{172}, b$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal) and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,43$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{43}:C_{344}$
Order: \(14792\)\(\medspace = 2^{3} \cdot 43^{2} \)
Exponent: \(344\)\(\medspace = 2^{3} \cdot 43 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_{172}$
Order: \(172\)\(\medspace = 2^{2} \cdot 43 \)
Exponent: \(172\)\(\medspace = 2^{2} \cdot 43 \)
Automorphism Group: $C_2\times C_{42}$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Outer Automorphisms: $C_2\times C_{42}$, of order \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,43$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{43}.C_{21}^2.C_2^4$
$\operatorname{Aut}(H)$ $C_{42}$, of order \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{43}\times C_{172}$
Normalizer:$C_{43}:C_{344}$
Minimal over-subgroups:$C_{43}\times C_{86}$$C_{172}$
Maximal under-subgroups:$C_{43}$$C_2$

Other information

Möbius function$0$
Projective image$C_{43}:C_{172}$