Properties

Label 147456.i.2304.A
Order $ 2^{6} $
Index $ 2^{8} \cdot 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^6$
Order: \(64\)\(\medspace = 2^{6} \)
Index: \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
Exponent: \(2\)
Generators: $\langle(5,6)(7,8)(9,10)(11,12)(17,18)(19,20)(21,22)(23,24), (9,10)(21,22), (7,8) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_2^{12}.(C_6\times S_3)$
Order: \(147456\)\(\medspace = 2^{14} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2\times A_4^2:D_4$
Order: \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $A_4^2.C_2^4.C_2^3$
Outer Automorphisms: $C_2^2\times D_4$, of order \(32\)\(\medspace = 2^{5} \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian and monomial (hence solvable).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^8.C_6^2.C_2^6.C_2^3$
$\operatorname{Aut}(H)$ $\GL(6,2)$, of order \(20158709760\)\(\medspace = 2^{15} \cdot 3^{4} \cdot 5 \cdot 7^{2} \cdot 31 \)
$W$$C_3\times S_3$, of order \(18\)\(\medspace = 2 \cdot 3^{2} \)

Related subgroups

Centralizer:$C_2^{12}.C_2$
Normalizer:$C_2^{12}.(C_6\times S_3)$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed