Properties

Label 1472.389.92.a1.a1
Order $ 2^{4} $
Index $ 2^{2} \cdot 23 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{16}$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(92\)\(\medspace = 2^{2} \cdot 23 \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Generators: $b^{30}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the Frattini subgroup (hence characteristic and normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and a $p$-group.

Ambient group ($G$) information

Description: $C_{23}:Q_{64}$
Order: \(1472\)\(\medspace = 2^{6} \cdot 23 \)
Exponent: \(736\)\(\medspace = 2^{5} \cdot 23 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $D_{46}$
Order: \(92\)\(\medspace = 2^{2} \cdot 23 \)
Exponent: \(46\)\(\medspace = 2 \cdot 23 \)
Automorphism Group: $C_2\times F_{23}$, of order \(1012\)\(\medspace = 2^{2} \cdot 11 \cdot 23 \)
Outer Automorphisms: $C_{22}$, of order \(22\)\(\medspace = 2 \cdot 11 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{184}.C_{44}.C_2^4$
$\operatorname{Aut}(H)$ $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16192\)\(\medspace = 2^{6} \cdot 11 \cdot 23 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{23}:C_{32}$
Normalizer:$C_{23}:Q_{64}$
Minimal over-subgroups:$C_{368}$$Q_{32}$$Q_{32}$$C_{32}$
Maximal under-subgroups:$C_8$

Other information

Möbius function$-46$
Projective image$C_{23}:D_{16}$