Subgroup ($H$) information
| Description: | $C_{22}$ |
| Order: | \(22\)\(\medspace = 2 \cdot 11 \) |
| Index: | \(66550\)\(\medspace = 2 \cdot 5^{2} \cdot 11^{3} \) |
| Exponent: | \(22\)\(\medspace = 2 \cdot 11 \) |
| Generators: |
$c^{55}, d$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is characteristic (hence normal) and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,11$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
| Description: | $C_{10}\times \He_{11}:C_{110}$ |
| Order: | \(1464100\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 11^{4} \) |
| Exponent: | \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and supersolvable (hence solvable and monomial).
Quotient group ($Q$) structure
| Description: | $C_5\times C_{11}^2:C_{110}$ |
| Order: | \(66550\)\(\medspace = 2 \cdot 5^{2} \cdot 11^{3} \) |
| Exponent: | \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \) |
| Automorphism Group: | $\He_{11}.C_5^3.C_2^3.C_2$ |
| Outer Automorphisms: | $C_{10}\times F_5$, of order \(200\)\(\medspace = 2^{3} \cdot 5^{2} \) |
| Nilpotency class: | $-1$ |
| Derived length: | $2$ |
The quotient is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $\He_{11}.C_{55}.C_{10}^2.C_2^3$ |
| $\operatorname{Aut}(H)$ | $C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \) |
| $W$ | $C_5$, of order \(5\) |
Related subgroups
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $0$ |
| Projective image | $C_5\times \He_{11}:C_{110}$ |