Properties

Label 1464100.u.66550.A
Order $ 2 \cdot 11 $
Index $ 2 \cdot 5^{2} \cdot 11^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{22}$
Order: \(22\)\(\medspace = 2 \cdot 11 \)
Index: \(66550\)\(\medspace = 2 \cdot 5^{2} \cdot 11^{3} \)
Exponent: \(22\)\(\medspace = 2 \cdot 11 \)
Generators: $c^{55}, d$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal) and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,11$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{10}\times \He_{11}:C_{110}$
Order: \(1464100\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 11^{4} \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $C_5\times C_{11}^2:C_{110}$
Order: \(66550\)\(\medspace = 2 \cdot 5^{2} \cdot 11^{3} \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Automorphism Group: $\He_{11}.C_5^3.C_2^3.C_2$
Outer Automorphisms: $C_{10}\times F_5$, of order \(200\)\(\medspace = 2^{3} \cdot 5^{2} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$\He_{11}.C_{55}.C_{10}^2.C_2^3$
$\operatorname{Aut}(H)$ $C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)
$W$$C_5$, of order \(5\)

Related subgroups

Centralizer:$C_2\times \He_{11}:C_{110}$
Normalizer:$C_{10}\times \He_{11}:C_{110}$
Minimal over-subgroups:$C_{11}\times C_{22}$$C_{11}\times C_{22}$$C_{11}\times C_{22}$$C_{11}\times C_{22}$$C_{110}$$C_{11}:C_{10}$$C_2\times C_{22}$
Maximal under-subgroups:$C_{11}$$C_2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_5\times \He_{11}:C_{110}$