Properties

Label 1464100.g.5._.C
Order $ 2^{2} \cdot 5 \cdot 11^{4} $
Index $ 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$\He_{11}:(C_5\times D_{22})$
Order: \(292820\)\(\medspace = 2^{2} \cdot 5 \cdot 11^{4} \)
Index: \(5\)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Generators: $\left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 3 & 1 & 5 & 0 \\ 0 & 0 & 1 & 0 \\ 7 & 0 & 8 & 1 \end{array}\right), \left(\begin{array}{rrrr} 9 & 1 & 8 & 1 \\ 0 & 7 & 6 & 8 \\ 9 & 4 & 6 & 10 \\ 7 & 9 & 0 & 4 \end{array}\right), \left(\begin{array}{rrrr} 8 & 6 & 8 & 10 \\ 10 & 8 & 2 & 8 \\ 9 & 3 & 5 & 5 \\ 5 & 9 & 1 & 5 \end{array}\right), \left(\begin{array}{rrrr} 7 & 0 & 0 & 0 \\ 3 & 6 & 0 & 0 \\ 6 & 0 & 6 & 0 \\ 2 & 2 & 10 & 2 \end{array}\right), \left(\begin{array}{rrrr} 5 & 0 & 0 & 0 \\ 0 & 3 & 1 & 0 \\ 1 & 0 & 3 & 0 \\ 4 & 5 & 9 & 4 \end{array}\right), \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 10 & 0 \\ 0 & 1 & 0 & 10 \end{array}\right), \left(\begin{array}{rrrr} 10 & 7 & 4 & 8 \\ 2 & 10 & 7 & 4 \\ 10 & 9 & 3 & 4 \\ 1 & 10 & 9 & 3 \end{array}\right)$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), maximal, nonabelian, and supersolvable (hence solvable and monomial). Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $\He_{11}.(C_{10}\times F_{11})$
Order: \(1464100\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 11^{4} \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Quotient group ($Q$) structure

Description: $C_5$
Order: \(5\)
Exponent: \(5\)
Automorphism Group: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_{11}^2.F_{11}^2$, of order \(2928200\)\(\medspace = 2^{3} \cdot 5^{2} \cdot 11^{4} \)
$\operatorname{Aut}(H)$ $C_2\times C_{11}^2.F_{11}^2$, of order \(2928200\)\(\medspace = 2^{3} \cdot 5^{2} \cdot 11^{4} \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed