Properties

Label 146410.v.22.b1
Order $ 5 \cdot 11^{3} $
Index $ 2 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}^2:C_{55}$
Order: \(6655\)\(\medspace = 5 \cdot 11^{3} \)
Index: \(22\)\(\medspace = 2 \cdot 11 \)
Exponent: \(55\)\(\medspace = 5 \cdot 11 \)
Generators: $a^{22}, cd^{6}, d, a^{10}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_{11}^3:C_{110}$
Order: \(146410\)\(\medspace = 2 \cdot 5 \cdot 11^{4} \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^3.C_{11}^2.C_{10}^2$
$\operatorname{Aut}(H)$ $\He_{11}:C_{10}^2$, of order \(133100\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 11^{3} \)
$W$$C_{11}^2:C_{110}$, of order \(13310\)\(\medspace = 2 \cdot 5 \cdot 11^{3} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_{11}^2:C_{110}$
Normal closure:$C_{11}^3:C_{55}$
Core:$\He_{11}$
Minimal over-subgroups:$C_{11}^3:C_{55}$$C_{11}^2:C_{110}$
Maximal under-subgroups:$\He_{11}$$C_{11}:C_{55}$$C_{11}^2:C_5$

Other information

Number of subgroups in this autjugacy class$11$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$C_{11}^3:C_{110}$