Properties

Label 1458.490.54.d1
Order $ 3^{3} $
Index $ 2 \cdot 3^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^3$
Order: \(27\)\(\medspace = 3^{3} \)
Index: \(54\)\(\medspace = 2 \cdot 3^{3} \)
Exponent: \(3\)
Generators: $ab, ce^{3}, e^{3}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and a $p$-group (hence elementary and hyperelementary).

Ambient group ($G$) information

Description: $C_2\times C_3^4:C_3^2$
Order: \(1458\)\(\medspace = 2 \cdot 3^{6} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_3^2\times C_6$
Order: \(54\)\(\medspace = 2 \cdot 3^{3} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $\GL(3,3)$, of order \(11232\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 13 \)
Outer Automorphisms: $\GL(3,3)$, of order \(11232\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 13 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 3$ (hence hyperelementary).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4.C_3:S_3.(C_3\times S_3\times S_4)$
$\operatorname{Aut}(H)$ $\GL(3,3)$, of order \(11232\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 13 \)
$\operatorname{res}(S)$$C_3^2:D_6$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(729\)\(\medspace = 3^{6} \)
$W$$C_3^2$, of order \(9\)\(\medspace = 3^{2} \)

Related subgroups

Centralizer:$C_3^3\times C_6$
Normalizer:$C_2\times C_3^4:C_3^2$
Minimal over-subgroups:$C_3^4$$C_3\times \He_3$$C_3\wr C_3$$C_3^2\times C_6$
Maximal under-subgroups:$C_3^2$$C_3^2$$C_3^2$

Other information

Number of subgroups in this autjugacy class$8$
Number of conjugacy classes in this autjugacy class$8$
Möbius function$27$
Projective image$C_3^4:C_6$