Subgroup ($H$) information
Description: | $C_9:C_3^2$ |
Order: | \(81\)\(\medspace = 3^{4} \) |
Index: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
Exponent: | \(9\)\(\medspace = 3^{2} \) |
Generators: |
$a^{2}e, bc^{2}e^{6}, ce^{6}$
|
Nilpotency class: | $2$ |
Derived length: | $2$ |
The subgroup is normal, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.
Ambient group ($G$) information
Description: | $C_2\times C_3^3.C_3^3$ |
Order: | \(1458\)\(\medspace = 2 \cdot 3^{6} \) |
Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
Nilpotency class: | $3$ |
Derived length: | $2$ |
The ambient group is nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.
Quotient group ($Q$) structure
Description: | $C_3\times C_6$ |
Order: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Automorphism Group: | $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Outer Automorphisms: | $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 3$ (hence hyperelementary), and metacyclic.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3^3.C_3^5.C_2^2$ |
$\operatorname{Aut}(H)$ | $C_3^4:S_3^2$, of order \(2916\)\(\medspace = 2^{2} \cdot 3^{6} \) |
$\operatorname{res}(S)$ | $(C_3\times \He_3):S_3$, of order \(486\)\(\medspace = 2 \cdot 3^{5} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(27\)\(\medspace = 3^{3} \) |
$W$ | $C_3\times \He_3$, of order \(81\)\(\medspace = 3^{4} \) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $2$ |
Number of conjugacy classes in this autjugacy class | $2$ |
Möbius function | $-3$ |
Projective image | $C_3^4:C_6$ |