Subgroup ($H$) information
| Description: | $C_3\times C_9$ |
| Order: | \(27\)\(\medspace = 3^{3} \) |
| Index: | \(54\)\(\medspace = 2 \cdot 3^{3} \) |
| Exponent: | \(9\)\(\medspace = 3^{2} \) |
| Generators: |
$ce^{4}, be^{6}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.
Ambient group ($G$) information
| Description: | $C_2\times C_3^3.C_3^3$ |
| Order: | \(1458\)\(\medspace = 2 \cdot 3^{6} \) |
| Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
| Nilpotency class: | $3$ |
| Derived length: | $2$ |
The ambient group is nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3.C_3^5.C_6^2$ |
| $\operatorname{Aut}(H)$ | $C_3^2:D_6$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \) |
| $\operatorname{res}(S)$ | $C_6\times S_3$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(243\)\(\medspace = 3^{5} \) |
| $W$ | $C_3$, of order \(3\) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $3$ |
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $0$ |
| Projective image | $C_3^4:C_6$ |