Properties

Label 1458.1140.2.a1.a1
Order $ 3^{6} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^3.C_3^3$
Order: \(729\)\(\medspace = 3^{6} \)
Index: \(2\)
Exponent: \(9\)\(\medspace = 3^{2} \)
Generators: $a, c^{2}, e^{4}$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), maximal, a semidirect factor, nonabelian, a $3$-Sylow subgroup (hence a Hall subgroup), a $p$-group (hence elementary and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_3^4.(C_3\times S_3)$
Order: \(1458\)\(\medspace = 2 \cdot 3^{6} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_3^3\times \He_3).S_3^2$, of order \(26244\)\(\medspace = 2^{2} \cdot 3^{8} \)
$\operatorname{Aut}(H)$ $C_3^6.C_3^4.C_3.D_6$
$\card{\operatorname{res}(\operatorname{Aut}(G))}$\(8748\)\(\medspace = 2^{2} \cdot 3^{7} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(3\)
$W$$C_3^3:C_6$, of order \(162\)\(\medspace = 2 \cdot 3^{4} \)

Related subgroups

Centralizer:$C_3^2$
Normalizer:$C_3^4.(C_3\times S_3)$
Complements:$C_2$
Minimal over-subgroups:$C_3^4.(C_3\times S_3)$
Maximal under-subgroups:$C_3^4:C_3$$C_9:C_3^3$$\He_3:C_3^2$$\He_3:C_3^2$$\He_3:C_3^2$$C_3^4:C_3$$\He_3:C_3^2$$\He_3:C_3^2$$\He_3:C_3^2$

Other information

Möbius function$-1$
Projective image$C_3^3.(C_3\times S_3)$