Subgroup ($H$) information
| Description: | $C_3^3.C_3^3$ | 
| Order: | \(729\)\(\medspace = 3^{6} \) | 
| Index: | \(2\) | 
| Exponent: | \(9\)\(\medspace = 3^{2} \) | 
| Generators: | $a, c^{2}, e^{4}$ | 
| Nilpotency class: | $3$ | 
| Derived length: | $2$ | 
The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), maximal, a semidirect factor, nonabelian, a $3$-Sylow subgroup (hence a Hall subgroup), a $p$-group (hence elementary and hyperelementary), and metabelian.
Ambient group ($G$) information
| Description: | $C_3^4.(C_3\times S_3)$ | 
| Order: | \(1458\)\(\medspace = 2 \cdot 3^{6} \) | 
| Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) | 
| Derived length: | $2$ | 
The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Quotient group ($Q$) structure
| Description: | $C_2$ | 
| Order: | \(2\) | 
| Exponent: | \(2\) | 
| Automorphism Group: | $C_1$, of order $1$ | 
| Outer Automorphisms: | $C_1$, of order $1$ | 
| Nilpotency class: | $1$ | 
| Derived length: | $1$ | 
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $(C_3^3\times \He_3).S_3^2$, of order \(26244\)\(\medspace = 2^{2} \cdot 3^{8} \) | 
| $\operatorname{Aut}(H)$ | $C_3^6.C_3^4.C_3.D_6$ | 
| $\card{\operatorname{res}(\operatorname{Aut}(G))}$ | \(8748\)\(\medspace = 2^{2} \cdot 3^{7} \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(3\) | 
| $W$ | $C_3^3:C_6$, of order \(162\)\(\medspace = 2 \cdot 3^{4} \) | 
Related subgroups
Other information
| Möbius function | $-1$ | 
| Projective image | $C_3^3.(C_3\times S_3)$ | 
