Subgroup ($H$) information
| Description: | $C_7:Q_8$ |
| Order: | \(56\)\(\medspace = 2^{3} \cdot 7 \) |
| Index: | \(26\)\(\medspace = 2 \cdot 13 \) |
| Exponent: | \(28\)\(\medspace = 2^{2} \cdot 7 \) |
| Generators: |
$ab, b^{4}, c^{78}, b^{6}$
|
| Derived length: | $2$ |
The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.
Ambient group ($G$) information
| Description: | $C_{91}:Q_{16}$ |
| Order: | \(1456\)\(\medspace = 2^{4} \cdot 7 \cdot 13 \) |
| Exponent: | \(728\)\(\medspace = 2^{3} \cdot 7 \cdot 13 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{91}.C_6^2.C_2^5$ |
| $\operatorname{Aut}(H)$ | $D_4\times F_7$, of order \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \) |
| $\operatorname{res}(S)$ | $D_4\times F_7$, of order \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| $W$ | $C_7:D_4$, of order \(56\)\(\medspace = 2^{3} \cdot 7 \) |
Related subgroups
| Centralizer: | $C_2$ | ||
| Normalizer: | $C_7:Q_{16}$ | ||
| Normal closure: | $C_{91}:Q_8$ | ||
| Core: | $C_{28}$ | ||
| Minimal over-subgroups: | $C_{91}:Q_8$ | $C_7:Q_{16}$ | |
| Maximal under-subgroups: | $C_{28}$ | $C_7:C_4$ | $Q_8$ |
Other information
| Number of subgroups in this conjugacy class | $13$ |
| Möbius function | $1$ |
| Projective image | $C_{91}:D_4$ |