Properties

Label 145200.l.7260.c1
Order $ 2^{2} \cdot 5 $
Index $ 2^{2} \cdot 3 \cdot 5 \cdot 11^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{10}$
Order: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Index: \(7260\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11^{2} \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $a^{5}b^{15}c^{3}d^{11}, a^{2}b^{24}, d^{22}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_{220}:F_{11}:S_3$
Order: \(145200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \cdot 11^{2} \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^2.C_{30}.C_{10}.C_2^6.C_2$
$\operatorname{Aut}(H)$ $C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2\times C_{10}^2$
Normalizer:$C_4:C_{10}^2$
Normal closure:$C_{11}^2:(D_{12}\times C_5^2)$
Core:$C_2$
Minimal over-subgroups:$C_{22}:C_{10}$$C_2\times F_{11}$$C_{10}^2$$S_3\times C_{10}$$C_2^2\times C_{10}$$C_5\times D_4$$C_5\times D_4$
Maximal under-subgroups:$C_{10}$$C_{10}$$C_2^2$

Other information

Number of subgroups in this autjugacy class$7260$
Number of conjugacy classes in this autjugacy class$20$
Möbius function$-2$
Projective image$C_{11}^2:(S_3\times C_{10}^2)$