Properties

Label 145200.k.4.b1
Order $ 2^{2} \cdot 3 \cdot 5^{2} \cdot 11^{2} $
Index $ 2^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}^2:(D_6\times C_5^2)$
Order: \(36300\)\(\medspace = 2^{2} \cdot 3 \cdot 5^{2} \cdot 11^{2} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Generators: $a^{5}, cd^{9}, a^{2}, b^{24}, b^{60}, d, b^{80}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, monomial (hence solvable), and an A-group.

Ambient group ($G$) information

Description: $C_{11}^2:C_{120}:C_{10}$
Order: \(145200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \cdot 11^{2} \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^2.C_{30}.C_{10}.C_2^5$
$\operatorname{Aut}(H)$ $C_{11}^2.C_{15}.C_{10}.C_2^4$
$W$$C_{11}^2:(S_3\times C_{10})$, of order \(7260\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11^{2} \)

Related subgroups

Centralizer:$C_{10}$
Normalizer:$C_{11}^2:(D_{12}\times C_5^2)$
Normal closure:$C_{11}^2:(D_{12}\times C_5^2)$
Core:$C_5\times C_{11}^2:C_{30}$
Minimal over-subgroups:$C_{11}^2:(D_{12}\times C_5^2)$
Maximal under-subgroups:$C_5\times C_{11}^2:C_{30}$$C_{11}^2:(S_3\times C_5^2)$$C_{110}:F_{11}$$C_{10}\times C_{11}^2:S_3$$C_{11}^2:(S_3\times C_{10})$$D_6\times C_5^2$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image not computed