Properties

Label 145200.j.6.d1
Order $ 2^{3} \cdot 5^{2} \cdot 11^{2} $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}^2:(Q_8\times C_5^2)$
Order: \(24200\)\(\medspace = 2^{3} \cdot 5^{2} \cdot 11^{2} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Generators: $a^{5}, cd^{24}, a^{2}d^{22}, b^{6}, b^{15}d^{11}, d^{4}, d^{22}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_{110}:F_{11}.D_6$
Order: \(145200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \cdot 11^{2} \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^2.C_{30}.C_{10}.C_2^6.C_2$
$\operatorname{Aut}(H)$ $C_{11}^2.C_{10}^2.C_{10}.C_2^4$
$W$$D_{22}:F_{11}$, of order \(4840\)\(\medspace = 2^{3} \cdot 5 \cdot 11^{2} \)

Related subgroups

Centralizer:$C_{10}$
Normalizer:$C_{55}:(Q_8\times F_{11})$
Normal closure:$C_{11}^2:C_{60}.C_{10}$
Core:$C_{110}.F_{11}$
Minimal over-subgroups:$C_{11}^2:C_{60}.C_{10}$$C_{55}:(Q_8\times F_{11})$
Maximal under-subgroups:$C_{110}.F_{11}$$C_{110}.F_{11}$$C_{110}.D_{22}$$C_{11}^2:(C_5\times Q_8)$$C_{220}.C_{10}$

Other information

Number of subgroups in this autjugacy class$6$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$1$
Projective image$C_{11}^2:(C_{10}\times D_6)$