Properties

Label 14520.bm.132.d1.b1
Order $ 2 \cdot 5 \cdot 11 $
Index $ 2^{2} \cdot 3 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}:C_{10}$
Order: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Index: \(132\)\(\medspace = 2^{2} \cdot 3 \cdot 11 \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Generators: $a^{5}, cd^{9}, a^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 5$.

Ambient group ($G$) information

Description: $C_{11}^2:(C_5\times D_{12})$
Order: \(14520\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11^{2} \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^2.C_{30}.C_2^4$
$\operatorname{Aut}(H)$ $F_{11}$, of order \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
$W$$C_{11}:C_5$, of order \(55\)\(\medspace = 5 \cdot 11 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_{22}:C_{10}$
Normal closure:$C_{11}^2:(S_3\times C_{10})$
Core:$C_1$
Minimal over-subgroups:$C_{11}:F_{11}$$C_{22}:C_{10}$
Maximal under-subgroups:$C_{11}:C_5$$C_{22}$$C_{10}$
Autjugate subgroups:14520.bm.132.d1.a1

Other information

Number of subgroups in this conjugacy class$66$
Möbius function$0$
Projective image$C_{11}^2:(C_5\times D_{12})$