Properties

Label 14520.ba.60.a1.a1
Order $ 2 \cdot 11^{2} $
Index $ 2^{2} \cdot 3 \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}\times C_{22}$
Order: \(242\)\(\medspace = 2 \cdot 11^{2} \)
Index: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Exponent: \(22\)\(\medspace = 2 \cdot 11 \)
Generators: $\left(\begin{array}{rr} 120 & 0 \\ 0 & 120 \end{array}\right), \left(\begin{array}{rr} 100 & 66 \\ 110 & 23 \end{array}\right), \left(\begin{array}{rr} 23 & 66 \\ 110 & 100 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 11$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_5\times C_{11}^2:D_{12}$
Order: \(14520\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11^{2} \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $S_3\times C_{10}$
Order: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Automorphism Group: $C_4\times D_6$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Outer Automorphisms: $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^2.C_6.C_{10}.C_4.C_2^3$
$\operatorname{Aut}(H)$ $\GL(2,11)$, of order \(13200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \cdot 11 \)
$W$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_{11}\times C_{110}$
Normalizer:$C_5\times C_{11}^2:D_{12}$
Minimal over-subgroups:$C_{11}\times C_{110}$$C_{11}^2:C_6$$C_{11}^2:C_4$$C_{11}\times D_{22}$$C_{11}\times D_{22}$
Maximal under-subgroups:$C_{11}^2$$C_{22}$$C_{22}$$C_{22}$

Other information

Möbius function$6$
Projective image$C_5\times C_{11}^2:D_6$