Properties

Label 14520.ba.165.a1.b1
Order $ 2^{3} \cdot 11 $
Index $ 3 \cdot 5 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}:D_4$
Order: \(88\)\(\medspace = 2^{3} \cdot 11 \)
Index: \(165\)\(\medspace = 3 \cdot 5 \cdot 11 \)
Exponent: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Generators: $\left(\begin{array}{rr} 120 & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 120 & 0 \\ 0 & 120 \end{array}\right), \left(\begin{array}{rr} 1 & 11 \\ 99 & 1 \end{array}\right), \left(\begin{array}{rr} 0 & 51 \\ 102 & 0 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_5\times C_{11}^2:D_{12}$
Order: \(14520\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11^{2} \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^2.C_6.C_{10}.C_4.C_2^3$
$\operatorname{Aut}(H)$ $C_2^2\times F_{11}$, of order \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)
$W$$D_{22}$, of order \(44\)\(\medspace = 2^{2} \cdot 11 \)

Related subgroups

Centralizer:$C_{10}$
Normalizer:$C_{55}:D_4$
Normal closure:$C_{11}^2:D_{12}$
Core:$C_2$
Minimal over-subgroups:$D_{22}:D_{11}$$C_{55}:D_4$
Maximal under-subgroups:$C_2\times C_{22}$$D_{22}$$C_{11}:C_4$$D_4$
Autjugate subgroups:14520.ba.165.a1.a1

Other information

Number of subgroups in this conjugacy class$33$
Möbius function$0$
Projective image$C_5\times C_{11}^2:D_6$