Properties

Label 14520.ba.132.a1.a1
Order $ 2 \cdot 5 \cdot 11 $
Index $ 2^{2} \cdot 3 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{110}$
Order: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Index: \(132\)\(\medspace = 2^{2} \cdot 3 \cdot 11 \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Generators: $\left(\begin{array}{rr} 120 & 0 \\ 0 & 120 \end{array}\right), \left(\begin{array}{rr} 23 & 66 \\ 110 & 100 \end{array}\right), \left(\begin{array}{rr} 3 & 0 \\ 0 & 3 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5,11$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_5\times C_{11}^2:D_{12}$
Order: \(14520\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11^{2} \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^2.C_6.C_{10}.C_4.C_2^3$
$\operatorname{Aut}(H)$ $C_2\times C_{20}$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$D_{11}\times C_{110}$
Normalizer:$C_{110}.D_{22}$
Normal closure:$C_{11}\times C_{110}$
Core:$C_{10}$
Minimal over-subgroups:$C_{11}\times C_{110}$$C_2\times C_{110}$$C_5\times D_{22}$$C_{11}:C_{20}$
Maximal under-subgroups:$C_{55}$$C_{22}$$C_{10}$
Autjugate subgroups:14520.ba.132.a1.b1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$0$
Projective image$C_{11}^2:D_6$