Properties

Label 14400.bm.96.d1.a1
Order $ 2 \cdot 3 \cdot 5^{2} $
Index $ 2^{5} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_5\times C_{15}$
Order: \(150\)\(\medspace = 2 \cdot 3 \cdot 5^{2} \)
Index: \(96\)\(\medspace = 2^{5} \cdot 3 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $d^{30}, d^{12}e, e, d^{40}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $F_5^2:S_3^2$
Order: \(14400\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{15}^2.C_2^2.C_2^4.C_2^2$
$\operatorname{Aut}(H)$ $C_{10}:C_4^2$, of order \(160\)\(\medspace = 2^{5} \cdot 5 \)
$W$$C_{10}:C_4^2$, of order \(160\)\(\medspace = 2^{5} \cdot 5 \)

Related subgroups

Centralizer:$C_3\times C_{15}$
Normalizer:$C_3:S_3\times F_5^2$
Normal closure:$C_3\times D_5^2$
Core:$C_5\times C_{15}$
Minimal over-subgroups:$C_{15}:C_{30}$$C_3\times D_5^2$$C_{15}:D_{10}$$D_5\times D_{15}$$C_{15}\times F_5$$C_{15}:F_5$$C_{15}:C_{20}$$C_{15}:F_5$
Maximal under-subgroups:$C_5\times C_{15}$$C_5\times D_5$$C_{30}$$C_3\times D_5$
Autjugate subgroups:14400.bm.96.d1.b1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$F_5^2:S_3^2$