Properties

Label 14400.bm.24.a1.a1
Order $ 2^{3} \cdot 3 \cdot 5^{2} $
Index $ 2^{3} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_5^2.C_6$
Order: \(600\)\(\medspace = 2^{3} \cdot 3 \cdot 5^{2} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $cd^{48}e, e, d^{40}, c^{2}d^{12}e^{3}, d^{30}, d^{12}e^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $F_5^2:S_3^2$
Order: \(14400\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2\times D_6$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $S_3\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Outer Automorphisms: $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, an A-group, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{15}^2.C_2^2.C_2^4.C_2^2$
$\operatorname{Aut}(H)$ $F_5^2:C_2^2$, of order \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)
$W$$F_5^2:C_2^2$, of order \(1600\)\(\medspace = 2^{6} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_3^2$
Normalizer:$F_5^2:S_3^2$
Minimal over-subgroups:$C_3^2\times D_5:F_5$$D_5^2.D_6$$C_3\times F_5^2$$(C_5\times C_{15}):\OD_{16}$$D_5^2.D_6$$C_3\times D_5^2.C_2^2$$C_3:F_5^2$$D_5^2.C_{12}$
Maximal under-subgroups:$C_3\times D_5^2$$C_{15}:F_5$$C_{15}:F_5$$D_5:F_5$$C_6\times F_5$
Autjugate subgroups:14400.bm.24.a1.b1

Other information

Möbius function$24$
Projective image$F_5^2:S_3^2$