Properties

Label 14400.bm.16.o1.b1
Order $ 2^{2} \cdot 3^{2} \cdot 5^{2} $
Index $ 2^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}^2:C_2^2$
Order: \(900\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $a, e, d^{40}, b^{2}, c^{2}d^{12}e^{3}, d^{12}e$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $F_5^2:S_3^2$
Order: \(14400\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{15}^2.C_2^2.C_2^4.C_2^2$
$\operatorname{Aut}(H)$ $D_6\times F_5\wr C_2$, of order \(9600\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{2} \)
$W$$D_5^2.C_2^2\times S_3$, of order \(2400\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{2} \)

Related subgroups

Centralizer:$C_3$
Normalizer:$D_5^2.(S_3\times D_6)$
Normal closure:$C_{15}^2:D_4$
Core:$C_{15}^2:C_2$
Minimal over-subgroups:$C_{15}^2:D_4$$D_{15}^2:C_2$$C_{15}^2:D_4$$C_{15}^2:D_4$$C_3\times D_{15}:F_5$$(C_{15}\times D_{15}):C_4$$C_{15}^2:D_4$
Maximal under-subgroups:$C_{15}^2:C_2$$C_{15}\times D_{15}$$C_3\times D_5^2$$C_{15}:D_{10}$$C_{15}:D_6$
Autjugate subgroups:14400.bm.16.o1.a1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$F_5^2:S_3^2$