Properties

Label 14400.bm.100.a1.a1
Order $ 2^{4} \cdot 3^{2} $
Index $ 2^{2} \cdot 5^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_6:D_6$
Order: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Index: \(100\)\(\medspace = 2^{2} \cdot 5^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a, d^{40}, b^{2}, b^{3}d^{24}e^{2}, d^{30}, c^{2}d^{12}e^{3}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and rational.

Ambient group ($G$) information

Description: $F_5^2:S_3^2$
Order: \(14400\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{2} \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{15}^2.C_2^2.C_2^4.C_2^2$
$\operatorname{Aut}(H)$ $D_6^2:C_2^2$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
$W$$S_3\times D_6$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_4$
Normalizer:$D_{12}:D_6$
Normal closure:$D_5^2.(S_3\times D_6)$
Core:$C_3:S_3$
Minimal over-subgroups:$D_5^2:S_3^2$$D_{12}:D_6$
Maximal under-subgroups:$C_6:D_6$$S_3\times D_6$$C_6.D_6$$C_6\wr C_2$$C_6\wr C_2$$C_3:D_{12}$$C_3:D_{12}$$S_3\times D_4$$S_3\times D_4$

Other information

Number of subgroups in this conjugacy class$50$
Möbius function$0$
Projective image$F_5^2:S_3^2$