Subgroup ($H$) information
| Description: | $C_2^2\times D_4$ | 
| Order: | \(32\)\(\medspace = 2^{5} \) | 
| Index: | \(45\)\(\medspace = 3^{2} \cdot 5 \) | 
| Exponent: | \(4\)\(\medspace = 2^{2} \) | 
| Generators: | 
		
    $\langle(6,9)(7,8), (8,9), (1,2)(4,5)(6,9)(7,8), (1,4)(2,5)(6,7), (6,8)(7,9)\rangle$
    
    
    
         | 
| Nilpotency class: | $2$ | 
| Derived length: | $2$ | 
The subgroup is nonabelian, a $2$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), metabelian, and rational.
Ambient group ($G$) information
| Description: | $S_4\times A_5$ | 
| Order: | \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \) | 
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) | 
| Derived length: | $3$ | 
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $S_4\times S_5$, of order \(2880\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5 \) | 
| $\operatorname{Aut}(H)$ | $C_2^6:(C_2\times S_4)$, of order \(3072\)\(\medspace = 2^{10} \cdot 3 \) | 
| $\operatorname{res}(S)$ | $C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(8\)\(\medspace = 2^{3} \) | 
| $W$ | $C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) | 
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $15$ | 
| Möbius function | $0$ | 
| Projective image | $S_4\times A_5$ |