Properties

Label 1440.5642.5.a1
Order $ 2^{5} \cdot 3^{2} $
Index $ 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4:S_3^2$
Order: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Index: \(5\)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a, c^{2}, d^{30}, b, d^{40}, c^{3}, d^{15}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a direct factor, nonabelian, a Hall subgroup, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_{10}.D_6^2$
Order: \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_5$
Order: \(5\)
Exponent: \(5\)
Automorphism Group: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4\times (C_3\times C_6).C_2^6.C_2$
$\operatorname{Aut}(H)$ $C_6^2:D_4^2$, of order \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_6^2:D_4^2$, of order \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(4\)\(\medspace = 2^{2} \)
$W$$D_6^2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_{10}$
Normalizer:$C_{10}.D_6^2$
Complements:$C_5$
Minimal over-subgroups:$C_{10}.D_6^2$
Maximal under-subgroups:$D_6.D_6$$D_6:D_6$$C_2^2.S_3^2$$C_{12}.D_6$$C_{12}:D_6$$C_{12}.D_6$$C_4\times S_3^2$$C_{12}.D_6$$D_4:D_6$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$C_5\times D_6^2$