Properties

Label 1440.5010.8.f1.b1
Order $ 2^{2} \cdot 3^{2} \cdot 5 $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2:F_5$
Order: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $ab, b^{4}, c^{40}, b^{6}c^{30}, c^{12}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_{30}.(C_4\times D_6)$
Order: \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $Q_8$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metacyclic (hence metabelian), and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_6\times S_3\times D_5).C_2^5$
$\operatorname{Aut}(H)$ $F_5\times C_3^2:\GL(2,3)$, of order \(8640\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5 \)
$\operatorname{res}(S)$$F_5\times S_3^2$, of order \(720\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$D_5.S_3^2$, of order \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_4$
Normalizer:$C_{30}.(C_4\times D_6)$
Complements:$Q_8$ $Q_8$ $Q_8$ $Q_8$
Minimal over-subgroups:$C_2\times C_3^2:F_5$
Maximal under-subgroups:$C_3^2\times D_5$$C_{15}:C_4$$C_{15}:C_4$$C_{15}:C_4$$C_3^2:C_4$
Autjugate subgroups:1440.5010.8.f1.a1

Other information

Möbius function$0$
Projective image$C_{30}.(C_4\times D_6)$