Properties

Label 1440.5010.4.g1.a1
Order $ 2^{3} \cdot 3^{2} \cdot 5 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{60}.C_6$
Order: \(360\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $ab^{2}, c^{12}, c^{40}, c^{30}, c^{15}, b^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, and metacyclic (hence solvable, supersolvable, monomial, and metabelian).

Ambient group ($G$) information

Description: $C_{30}.(C_4\times D_6)$
Order: \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_6\times S_3\times D_5).C_2^5$
$\operatorname{Aut}(H)$ $D_4\times D_6\times F_5$, of order \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \)
$\operatorname{res}(\operatorname{Aut}(G))$$D_4\times D_6\times F_5$, of order \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$D_6\times F_5$, of order \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_{30}.(C_4\times D_6)$
Complements:$C_4$ $C_4$ $C_4$ $C_4$ $C_4$
Minimal over-subgroups:$C_{60}.D_6$
Maximal under-subgroups:$C_3\times C_{60}$$C_{15}:C_{12}$$C_{15}:C_{12}$$C_{15}:Q_8$$C_{15}:Q_8$$C_3^2:Q_8$

Other information

Möbius function$0$
Projective image$D_{10}.S_3^2$